Intermediates in the 1:2-Addition of 1,1-Diethoxyethene to Quinones: Synthesis of Deoxyerythrolaccin

By Donald W. Cameron,* Maxwell J. Crossley, Geoffrey I. Feutrill, and Peter G. Griffiths (Department of Organic Chemistry, University of Melbourne, Parkville 3052, Australia)

Summary Intermediate 1:2-adducts have been isolated from the reaction of 1,1 -diethoxyethene with quinones, a process which has been extended to the synthesis of the insect pigment deoxyerythrolaccin.

Addition of 1,1-diethoxyethene to 1,4-quinones involves competing 1:1- and 1:2-processes. ${ }^{1}$ The former leads to dihydrobenzofuran or cyclobutane adducts and to other derived products. ${ }^{1,2}$ The latter is characterised by the
formation of a benzenoid ring, as in the conversion of 2,3-dimethyl-1,4-benzoquinone into the naphthoquinone (1). ${ }^{\mathbf{1}}$ The course of this synthetically useful process is obscure, no reaction intermediates having hitherto been detected.

Careful treatment of 2,3-dimethyl-1,4-benzoquinone with 1,1-diethoxyethene in $\mathrm{Me}_{2} \mathrm{SO}$ at room temperature gave a tan coloured product formulated as the 1:2-adduct (2), $m / e 368\left(M^{+}\right)$. It was unstable in air and light, particularly

(1)

(2)

(3)

$\begin{array}{lccc} & R^{1} & R^{2} & R^{3} \\ \text { (4); } & H & \text { OEt } & \mathrm{Me} \\ \text { (5); } & \text { OEt } & \mathrm{H} & \mathrm{Me}\end{array}$
in the presence of acid or on silica; this led to (1) ($\lambda_{\max }$ 410 nm). It absorbed as an enedione ($\lambda_{\max } 255 \mathrm{~nm}$). ${ }^{3}$ Its ${ }^{1} \mathrm{H}$ n.m.r. spectrum $\left(\mathrm{CDCl}_{3}\right)$ was complex, with resonances entirely at fields above $\delta 4 \cdot 0$. On addition of HCl in the absence of air this changed strikingly to the spectrum of the quinol (3) [$\delta 2.21,2.26$ (2 - and $3-\mathrm{Me}$), 6.32 , and 6.91 (ArH)] plus 2 mol . equiv. of ethanol. The quinol (3),
$m / e 276\left(M^{+}\right), \lambda_{\max } 350 \mathrm{~nm}$, with naphthalenic fine structure, was stable in the solid phase but in solution in air gave (1) quantitatively.

These data provide evidence for the conventional 1:2addition proceeding through at least two intermediate stages [(2) and (3)] leading to the end product (1). Discrete adducts, spectroscopically similar to (2) but of lower stability, have also been isolated from the reactions of 1,4 -benzoquinone and of 5-hydroxy-1,4-naphthoquinone. Analogous products have not so far been obtained from bromoquinones, ${ }^{4}$ presumably because of the ease of elimination of HBr .

Development of the $1: 2$-addition process to synthesising polyketides based on 1,3,6-trihydroxyanthraquinone requires controlled addition to derivatives of 6 -hydroxy-1,4-naphthoquinone. However application of standard procedures ${ }^{1,4}$ gave the non-polyketide 1,3,7-orientation. Thus 7-methoxy-5-methyl-1,4-naphthoquinone and its 2 -bromo-derivative, obtained by direct bromination, ${ }^{5}$ both reacted with 1,1-diethoxyethene to give (4) (45%). The substrates were derived ${ }^{6}$ from 7 -methoxy-5-methyltetralone ${ }^{7}$ and the direction of addition was compatible with electron release from the 7 -substituent, ${ }^{5}$ the orientational effect of bromo-groups, ${ }^{4}$ and model conversions of 6 -hydroxy- and 6 -ethoxy-1,4-naphthoquinones into $1,3,7$ trihydroxyanthraquinone. ${ }^{8}$ However, the isomeric 3-bromo-derivative was usefully obtained by unconventional oxidative hydrobromination. It reacted with 1,1-diethoxyethene to give (5) (80%). On hydrolysis, this gave the insect pigment deoxyerythrolaccin. ${ }^{9}$

We acknowledge Australian Post Graduate Research Awards (to M.J.C. and P.G.G.).
(Received, 23rd December 1976; Com. 1401.)

[^0]
[^0]: ${ }^{1}$ D. W. Cameron, M. J. Crossley, and G. I. Feutrill, J.C.S. Chem. Comm., 1976, 275.
 ${ }^{2}$ J. Banville and P. Brassard, J.C.S. Perkin I, 1976, 613.
 3 M. F. Ansell, B. W. Nash, and D. A. Wilson, J. Chem. Soc., 1963, 3012.
 4 J. Banville, J. Grandmaison, G. Lang, and P. Brassard, Canad. J. Chem., 1974, 52, 80.
 5 J. M. Lyons and R. H. Thomson, J. Chem. Soc., 1953, 2910.
 ${ }^{6}$ R. G. Cooke and H. Dowd, Austral. J. Chem., 1953, 6, 53.
 7 A. S. Dreiding and W. J. Pummer, J. Amer. Chem. Soc., 1953, 75, 3162.
 ${ }^{8}$ N. Parkash and K. Venkataraman, J. Sci. Ind. Res., India, 1954, 13B, 826.
 ${ }^{9}$ A. R. Mehandale, A. V. Rama Rao, I. N. Shaikh, and K. Venkataraman, Tetrahedron Letters, 1968 , 2231.

